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SUMMARY 

A system of reaction-diffusion equations which governs the propagation of an ozone decomposition laminar 
flame in Lagrangian co-ordinates is analysed by means of compact operators and modified equation methods. 
It is shown that the use of fourth-order accurate compact operators yields very accurate solutions if sufficient 
numbers of grid points are located at the flame front, where very steep gradients of temperature and species 
concentrations exist. Modified equation methods are shown to impose a restriction on the time step under 
certain conditions. The solutions obtained by means of compact operators and modified equation methods 
are compared with solutions obtained by other methods; good agreement is obtained. 
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INTRODUCTION 

Numerical methods for analysing reaction-diffusion equations have attracted the attention of 
many researchers because of their importance in heat transfer and combustion.'-' R a m ~ s ' - ~  has 
studied the temporal and spatial accuracy of a number of algorithms applicable to the analysis of 
reaction-diffusion equations. The methods evaluated by Ramos include a finite element scheme 
and a number of explicit and implicit finite-difference procedures. Techniques based on time 
linearization and operator-splitting were also evaluated. Ramosl-' noted that a fourth-order 
accurate, in both space and time, method of lines and a fourth-order accurate time linearization 
scheme which uses compact differences for the spatial derivatives yielded the most accurate 
temperature profiles and flame speeds for a variety of time steps and grid spacings. 

The use of high order methods, such as those reported by R a m o ~ , ~ , ~  for analysing the reaction- 
diffusion equations that govern flame propagation problems is a relatively unexplored research 
area. To our knowledge, Morgolis4 is the first researcher who used high order methods to analyse 
flame propagation phenomena; he applied sixth-order accurate B-splines to the analysis of the 
ozone-decomposition flame. Ramos' also studied the ozone-decomposition flame by means of 
high order methods, including a fourth-order accurate method of lines, a fourth-order accurate 
operator-splitting scheme and three fourth-order accurate partial time-linearization procedures. 
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Other investigators who have studied the ozone-decomposition flame have all employed lower 
order accurate methods6- l 3  

In this paper, two high order methods are used to study the reaction- diffusion equations that 
govern one-dimensional flame propagation problems. The methods evaluated here are fourth- 
order accurate in space. One method achieves fourth-order accuracy by using compact operators. 
The other methods, referred to as the modified equation methods, achieve fourth-order (or any 
other order of) accuracy by appending terms to the finite-difference equations in order to reduce 
truncation errors. 

It is noted that the manner in which the compact operators are used in the present study is 
different from the procedure used by Ramos’ and K0pa1.I~ The procedures employed by Ramos’ 
and Kopal14 can only be used if there is only one type of spatial derivative, e.g. only first-order or 
second-order derivatives, in each partial differential equation. The procedure employed here for 
implementing compact operators does not impose restrictions on the number or type of spatial 
derivatives in the partial differential equations. 15- 

Modified equation methods have been used by several investigators to develop more stable 
and/or more accurate numerical methods for analysing shock Modified equation 
methods do not seem to have been used to increase the accuracy of finite-difference methods 
for flame propagation problems. In this paper, three modified equation methods are developed 
for analysing the reaction-diffusion equations which arise in one-dimensional flame propagation 
phenomena. 

In this paper, compact operators and modified equation methods are used to calculate the 
laminar ozone-decomposition flame speed. The ozone-decomposition flame was chosen because it 
has been studied by means of finite element, partial time-linearization and finite-difference 
 scheme^.','^ The flame speeds calculated by means of the schemes presented in this paper are 
compared with those or References 5 and 13 in order to assess the accuracy of compact operator 
and modified equation methods on the numerical solution of reaction-diffusion equations. 

In the next section, the equations governing the propagation of a laminar ozone-decomposition 
flame in Lagrangian co-ordinates are briefly presented; these equations have been derived in 
greater detail in References 5 and 13. In the third section, an account is given of compact operators 
and modified equation methods. The third section is followed by the presentation of results and 
comparisons with solutions obtained with other methods. 

PROBLEM FORMULATION 

The equations which govern the propagation of a one-dimensional laminar flame through an 
oxygen-ozone mixture are presented in References 3-8 and 25. Here, we briefly review the 
assumptions made in deriving the governing equations in Lagrangian co-ordinates. 

The propagation of a one-dimensional laminar flame through a mixture composed of 25 per 
cent (by volume) of ozone and 7 5  per cent (by volume) of oxygen at a temperature of 300 K is 
considered. For such a mixture, the flame speed is much smaller than the speed of sound and 
the pressure can be assumed to be constant. The mixture is considered to be ideal and the 
thermal conductivity and specific heat at constant pressure are assumed constant. Body forces, 
viscous dissipation and Soret and Dufour effects are neglected and the species are assumed to 
have equal diffusion coefficients, which are inversely proportional to the square of the mixture 
density. Under these conditions, the continuity, energy and species equations need to be solved 
together with the equation of state. 

The system of one-dimensional mixed hyperbolic-parabolic conservation equations in Eulerian 
co-ordinates can be transformed into a system of reaction-diffusion equations in Lagrangian co- 
ordinates. The system of reaction-diffusion equations can be written as5 
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au a2u 
- = C I a , + S ,  aT a+ 

where 

Y ,  and Y2 are the mass fractions of ozone and oxygen, respectively; T is the temperature; T is the 
time; CI = p 2 D  = constant; p is the density; D is the diffusion coefficient; C, is the specific heat at 
constant pressure; h; is the enthalpy of formation of species i at To = 298.15 K; To is a reference 
temperature; wi is the reaction rate of species i; the superscript T denotes transpose and $ is the 
mass co-ordinate given by 

-= P ,  
a* 
ax 
a* 
at 
-= - p u .  

(4) 

(5) 

In equations (4) and (5), x is the Cartesian co-ordinate, u is the flow velocity and t = T. 

given in References 3-5, and are not repeated here. 
The values of the reaction rates, diffusion coefficients and initial and boundary conditions are 

FINITE-DIFFERENCE METHODS 

In order to obtain finite-difference solutions to the governing equations formulated in the previous 
section, the computational domain was replaced by a system of equally spaced grid points and 
equally incremented time levels. The time derivative in equation (1) was approximated by the 
following second-order accurate difference formula: 

where U; denotes the value of U at the grid point $ = iA$ and time level T = nAz, and A$ and AT 
are the grid spacing and the time step, respectively. Substitution of equation (6) into equation (1) 
yields 

u;+l-u; = 2[ 1 (CIW a w  + 
+ (a$ + s):]. A T  (7) 

In the above equation, S"+ ' is a non-linear function of U"+ '. Here s"+ is linearized with respect 
to U"+' as  follow^:^^,^' 

In equation (8) the source term has been linearized with respect to all the dependent variables, 
whereas in the partial linearization methods developed by Ramos' the source term is only 
linearized with respect to the dependent variable whose equation is being solved, i.e. 
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Equation (8) represents a second-order accurate approximation which is consistent with the 

Substitution of equation (8) into equation (7) yields 
order of accuracy of equation (6). 

Before numerical solutions can be obtained, the spatial derivatives appearing in equation (10) 
must be approximated. Here we evaluate two methods for approximating the spatial derivatives in 
equation (10): compact operators (or compact differences) and modified equation methods. 

Compact operators 

When compact operators are used, all spatial derivatives are treated as dependent variables. 
Accordingly, the following new dependent variable is defined in equation (10): 

A new dependent variable requires a new independent equation. Such an equation can be obtained 
from the following fourth-order accurate difference formula:' 5 9 1  * 

Fi=(ay)  a2u =- 1 d2 
A$2 1 +d2/12ui' 

where 
62Ui = ui+ 1 - 2ui  + ui- 1 .  

Multiplying both sides of equation (12) by 1 + d2/12 gives, after some algebraic manipulations, 
the desired equation relating F to U: 

which is a system of linear equations with a 6 x 6 block tridiagonal coefficient matrix. 
The solution of equation (15) yields the values of U and F at each grid point, whereas the 

compactor operator scheme developed by Ramos' results in a 3 x 3 block tridiagonal matrix, the 
solution of which only yields the value of U at each grid point. Furthermore, all the dependent 
variables are linearly coupled in equation ( 13, whereas in the partial time linearization schemes 
used by Ramos' the dependent variables are uncoupled because of the diagonalization of the 
source terms, cf. equation (9). Because of the uncoupling of the dependent variables, partial time 
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linearization methods require smaller time steps than the time linearization methods represented 
by equation (10). 

Equation (1 5) is the desired finite-difference form of equation (1) when the spatial derivative is 
approximated by compact operators. Equation (1 5) is second-order accurate in time and fourth- 
order accurate in space and involves the dependent variables (U and F) at only three grid points. 

The second-order spatial derivative F is zero at the upstream and downstream boundaries and 
equation (1 5) is solved by the Thomas algorithm in conjunction with LU decomposition for 
inversion of the 6 x 6 blocks. 

Modified equation methods 

Modified equation methods can be used to increase the temporal and/or the spatial accuracy of 
existing finite-difference equations by appending terms to these equations in order to reduce the 
truncation errors. Here a modified equation method is used to increase the spatial accuracy of the 
following second-order accurate, in both space and time, finite-difference representation of 
equation (1): 

In order to determine the terms that need to be appended to equation (16) to increase its spatial 
accuracy from second-order to fourth-order, we proceed to derive the modified equation of 
equation (l6), i.e. the partial differential equation truly represented by equation (16). Expanding 
U!*+ l i l ?  U;' ', U;_':, Uy+ and U;- in Taylor series around [ ( n  + 1/2)At, iA$] and substituting of 
the resulting expansions into equation (16) yields 

+ O(A$", At", A T " A $ ~ ) .  

The leading spatial truncation error in equation (1 7) is O ( A Z ~ A $ ~ ) .  This error can be eliminated 
by subtracting (Az2/8){ d2[equation (17)]/dt2} from equation (17). This results in the following 
equation: 

where TE is the truncation error, which can be written as 

Other time derivative terms can be eliminated from equation (17) in a similar manner.23 
It can readily be seen from equations (18) and (19) that if the term (aA1,h~/ l2) (8~U/dt ,b~)  is 

eliminated from the truncation error, the resulting finite-difference equation will be fourth-order 
accurate in space. In this paper, we eliminate (aA1)~/12)(d"U/d1,$~) from the truncation error by 
appending it, with opposite sign, to equation (16). This results in the following finite-difference 
equation: 
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uy+1-u; c( 
-- - [u;:; - 2u;+ + u;'; + u;+ 1 - 2u; + u;- A? 2A$2 

where the fourth-order spatial derivative is evaluated as 

ci 
- ( U ~ + ~ - ~ U ~ + ~  + 6 u i - 4 u i - ,  +ui-,)+0(~$4). 

12 12A1+h~ 

Equation (20) yields an O(At2,A$") truncation error if the appended term is evaluated at 
( n  + 1/2)Ar, i.e. in a Crank-Nicolson manner; however, if the appended term is evaluated 
explicitly (at nAr) or implicitly (at ( n  + 1)A.t) the truncation error of equation (20) is 
O ( A T ~ ,  A?A$', A$"). 

The accuracy of an explicit or implicit treatment of the appended term in equation (20) can be 
improved if the diffusion number, i.e. c i d ~ / A $ ~  is O(1). In this case, the truncation error 
proportional to ArAt,h2 becomes 

where the plus (minus) sign corresponds to an explicit (implicit) treatment of the appended term in 
equation (20). 

Equation (20) can be written in a general form as 

(Uy+'-Uy)-- ap [oS4u;+1 + ( I  - e)s"u;], 
1 ~AI,!J~ 

where 
d4Ui = Ui+ 2 - 4Ui+ 1 + 6Ui - 4Ui- 1 + Ui- 2. 

8(0 d 8 d 1) is a parameter which denotes the explicit (0 = 0), implicit (6' = 1)  and Crank-Nicolson 
(0 = 1/2) treatments of the appended terms and p is a parameter ( p  = 0 , l )  which indicates whether 
the appended term is considered (/j= 1 )  or disregarded (b=O) in equation (20). For p=O, 
the standard second-order, in both space and time, time linearization method is obtained. 

Equation (23) with p = 1 and 6' = 0 corresponds to a modified equation method in which the 
appended term is evaluated explicitly. This treatment has the advantage of maintaining the 3 x 3 
block tridiagonal structure of the coefficient matrix inherent in equation (16). The disadvantage of 
an explicit treatment of the appended term is that it may cause numerical instability if the time step 
is not sufficiently sma11.12.28 

Equation (23) with p = 1 and 8 = 1 corresponds to a modified equation method in which the 
appended term is evaluated implicitly. This treatment does not cause numerical instability; 
however, the 3 x 3 block tridiagonal structure inherent in equation (16) is destroyed. Equation (23) 
with p = 1 and 0 = 1 has a coefficient matrix with bandwidth greater than three. Thus, an implicit 
treatment of the appended term is computationally much more expensive than an explicit 
treatment. 

Equation (23) with p = 1 and 0 = 1/2 corresponds to a modified equation method in which the 
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appended term is evaluated in a Crank-Nicolson manner, i.e. at (n  + 1/2)A2. This method is 
O ( A T ~ ,  At)4) and yields a coefficient matrix with bandwidth greater than three. Thus, a Crank- 
Nicolson evaluation of the appended term is computationally more expensive than an explicit 
evaluation. 

Equation (23) is the desired finite-difference form of modified equation methods for one- 
dimensional reaction-diffusion equations. This equation is solved by the Thomas algorithm in 
conjunction with LU decomposition for the inversion of the 3 x 3 blocks. Iterations are needed 
when the appended term is evaluated implicitly or in a Crank-Nicolson manner. No iterations are 
required if the appended term is evaluated explicitly, although the time step may have to be reduced 
for stability reasons. 

RESULTS 

The compact operator and modified equation methods described in the previous section were used 
to calculate the propagation of a laminar ozone-decomposition flame. Specifically, the temperature 
and the mass fractions of ozone, molecular oxygen and atomic oxygen were calculated as a function 
of position and time. For both methods, calculations were terminated once the flame speed reached 
a steady-state value. The steady-state flame speed, V ,  was calculated by the following equation: 

I/= SCU(7, *)Id*/(U(7,0) - U(7, **)I (25) 
0 

obtained by integrating equation (1) in a co-ordinate system moving with the flame." In 
equation (25), t,bT is the length of the computational domain5 (Ic/T = 0.00025239 g/cm2). 

Compact operators 

Figures 1-4 show some results obtained by using compact operators, 121 grid points and a 
time step of lps. In these Figures, the temperature and mass fractions are plotted as functions of the 
non-dimensional Lagrangian coordinate ($/t)J and the normalized Eulerian co-ordinate ( X )  
where the Eulerian coordinate X is defined as 

p0  is the density of the unburned gases and t),, = t+hT/50. 
Figures 1-4 illustrate the diffusion of heat and mass and the flame propagation at different 

times in both Eulerian and Lagrangian co-ordinates. 
The results shown in Figures 1-4 are almost identical (differences less than 0.1 per cent) to those 

reported by Ram~s, ' . '~  who employed a variety of fourth-order accurate methods. The results 
computed with the compact operator and modified equation methods presented in this paper are 
shown in Table I. Table I also shows the flame speeds computed by means of the partial time 
linearization, majorant operator-splitting and method of lines techniques presented in Reference 5. 

Table I indicates that the steady-state flame speeds calculated with compact operators are as 
accurate as those reported by Margolis4 who used a sixth-order B-spline finite element method. 

Table I also shows that the flame speed computed with the compact operator technique 
presented in this paper is in good agreement with those calculated by means of adaptive finite- 
difference'-'' and finite element methods.' 

Table I indicates that the compact operator method yields a flame speed of 49.6 cm/s when 121 
grid points and a time step of lps are used in the calculations. This speed is in excellent agreement 
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Table I. Computed flame speeds 

Method Reference Wave speed Number of 
(cm/s) grid point 

Second-order linearization 
Compact operator 
Modified equationt (0 = 0) 
Modified equationt (0 = 1) 
Modified equationt (0 = 1/2) 
PDECOL 
Partial time linearization 
Partial time linearization 
Partial time linearization 
Fourth-order majorant operator-splitting 
Fourth-order method of lines 

Equation (lo)* 
Equation (15) 
Equation (23) 
Equation (23) 
Equation (23) 
4 
5CEquation (27)] 
5CEquation (29)] 
5CEquation (32)] 
5[Equation (22)] 
5CEquation (19)] 

49.20 
49.60 
49.27 
49.38 
49.53 
49.70 
48.91 
48.97 
49.38 
49.5 1 
4957 

121 
121 
121 
121 
121 
2701 
121 
121 
121 
121 
121 

*Also equation (23) with p = 0 
tp= 1. 
t Collocation points. 

with the value of 49.7 cm/s obtained by Margolis4 who used a sixth-order B-spline finite element 
technique and 270 collocation points. 

The accuracy of compact operator methods deteriorates as the number of grid points used in the 
calculations is decreased. Although compact operators have smaller truncation errors than 
second-order accurate techniques, compact operators must use a sufficient number of grid points 
to resolve the flame structure. In addition, the accuracy of the compact operator method presented 
in this paper (cf. equation (15)) deteriorates as large time steps are used in the calculations because 
of the linearization of the non-linear reaction terms (cf. equation (8)). When the reaction terms or 
their derivatives with respect to time are large, time linearization methods require small time steps 
and the delta formulation of Beam and Warmingz6 may yield oscillatory temperature and species 
mass fraction  profile^.^' These oscillations can be eliminated by reducing the time step employed in 
the calculations. 

The results shown in Table I indicate that the second-order time linearization method 
(cf. equation (10)) presented in this paper is more accurate than the first- (cf. equation (27)) and 
second-order (cf. equation (29)) partial time linearization schemes presented in Reference 5. 
Although partial time linearization schemes result in tridiagonal matrices for the dependent 
variables, their accuracies are lower than those of time linearization methods because of the 
uncoupling of the dependent variables (cf. equation (9)). Table I also shows that the compact 
operator method presented in this paper is more accurate than the partial time linearization 
compact operator scheme presented in Reference 5. 

The accuracy of the fourth method of lines and fourth-order majorant operator-splitting 
technique5 is slightly lower, but comparable to, that of the compact operator method presented in 
this paper. 

Modified equation methods 

The steady-state flame speeds computed with the modified equation methods presented in the 
previous section are shown in Table I. 

The modified equation method described by equation (23) with = 1 and 8 = 0, i.e. with an 
explicit evaluation of the appended term, was found to be conditionally stable, as expected. 2*20 
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This method yielded a flame speed of 49.27 cm/s with 121 grid points and a time step of 0.1 ps. This 
time is an order of magnitude smaller than that used in the compact operator algorithm. 

The flame speed calculated with the modified equation method and 8 = 0 (cf. equation (23)) is 
slightly more accurate than that computed with the second-order time linearization scheme 
(cf. equation (10)) and more accurate than those computed with partial time linearization 
algorithms which do not use compact differences. However, the fourth-order method of lines, 
the fourth-order majorant operator-splitting method and the compact operator techniques are 
more accurate than the modified equation method with 0 = 0. This comparison indicates that 
the accuracy of the modified equation method with 8 = 0 is somewhere in between second- 
order and fourth-order. 

Modified equation methods with 8 = 1 and 8 = 1/2 are more stable and accurate than modified 
equation schemes with 0 = 0. The accuracy of modified equation methods which use Crank- 
Nicolson evaluations for the appended terms is higher than that of those which employ explicit or 
implicit evaluations for the appended term. 

The results shown in Table I indicate that modified equation methods with 8 = 1/2 are not as 
accurate as compact operator techniques. Furthermore, modified equation methods with implicit 
or Crank-Nicolson evaluations of the appended term require iterations and involve five grid 
points. Compact operator schemes with time linearization of the reaction terms only involve three 
grid points and do not require iterations. However, they do require the inversion of 6 x 6 block 
matrices, whereas modified equation schemes require the inversion of 3 x 3 block matrices. 
Modified equation methods are also difficult to implement in confined flame propagation 
problems near the boundaries because they involve five grid points. 

CONCLUSIONS 

A compact operator technique and three modified equation schemes have been developed and 
applied to study a one-dimensional laminar ozone-decomposition flame. 

The compact operator technique was shown to yield as accurate flame speeds as those obtained 
by using a sixth-order B-spline finite element method. However, it was found that even though 
compact operators have very small truncation errors, grid spacings cannot be larger than those 
used by lower order accurate methods when analysing phenomena of very small length scales, such 
as a flame. This is because in order to resolve the flame structure, grid points must be located inside 
the very thin flame front. 

The aforementioned problem, however, is not insurmountable. It is believed that the number of 
grid points required can be reduced considerably in problems involving very small length scale 
phenomena if compact operators are used in conjunction with adaptive grid generation 
techniques. 

Modified equation methods were also found to yield accurate solutions. An explicit treatment of 
the appended term was found to cause numerical stability problems. Implicit and Crank-Nicolson 
treatments of the appended term did not cause numerical instability; however, in the present 
problem, implicit treatments required much more computational effort per time step than that 
required by the explicit treatment. 

Modified equation methods were found to be less accurate than compact operator techniques. 
However, their accuracy improves with the order of discretization used to evaluate the appended 
terms. 

Modified equation methods yield 3 x 3 block matrices, involve five grid points and require 
iterations if the appended terms are evaluated implicitly or in a Crank-Nicolson manner. 

Time-linearized compact operator schemes yield 6 x 6 block matrices, involve only three grid 
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points and do not require iterations. Compact operator schemes are, therefore, easier to implement 
in confined flame propagation problems than modified equation techniques. However, the 
accuracy of time linearization schemes depends on the magnitude of the non-linear reaction terms 
and on the rate of change of the reaction terms with respect to time. 
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